

- The Aging and Memory Clinic Speakers Series
 - Saint Louis University
- "Dementia Medications and their Alternatives"

From: A Comparison of the Prevalence of Dementia in the United States in 2000 and 2012

JAMA Intern Med. 2017;177(1):51-58. doi:10.1001/jamainternmed.2016.6807

Table 3. Cognitive Function, b	y Age Range, 2000 and 2012 Cohorts

	No. (%) [95% C]] ^a						
	65-74 y	65-74 y 75-84 y			≥85 y		Total (Age >65	y)
Cognitive	2000	2012	2000	2012	2000	2012	2000	2012
Function	(n = 5566)	(n = 4983)	(n = 3668)	(n = 3991)	(n = 1312)	(n = 1537)	(n = 10 546)	(n = 10511)
Normal	4320 (78.1)	3931 (82.8)	2231 (62.0)	2603 (67.5)	415 (32.8)	580 (40.8)	6966 (67.2)	7114 (72.4)
	[76.5-79.7]	[81.1-84.4]	[60.1-64.0]	[65.6-69.3]	[30.3-35.4]	[38.0-43.6]	[65.8-68.6]	[71.1-73.6]
CIND	942 (16.5)	837 (14.0)	924 (24.4)	936 (22.6)	427 (32.9)	451 (29.9)	2293 (21.2)	2224 (18.8)
	[15.2-17.8]	[12.7-15.4]	[23.0-25.9]	[20.9-24.3]	[29.5-36.5]	[27.4-32.6]	[20.1-22.3]	[17.8-19.9]
Dementia	304 (5.4)	215 (3.2)	513 (13.6)	452 (9.9)	470 (34.4)	506 (29.3)	1287 (11.6)	1173 (8.8)
	[4.7-6.3]	[2.7-3.8]	[12.1-15.1]	[9.0-10.9]	[31.2-37.6]	[26.9-31.8]	[10.7-12.7]	[8.2-9.4]
Age- and Sex	c-Standardized to 2	000 Population						
Normal	4320 (78.1)	3931 (82.9)	2231 (62.0)	2603 (67.6)	415 (32.8)	580 (40.7)	6966 (67.2)	7114 (72.6)
	[76.5-79.7]	[81.1-84.4]	[60.1-64.0]	[65.6-69.3]	[30.3-35.4)	[38.0-43.6]	[65.8-68.6]	[71.2-73.7]
CIND	942 (16.5)	837 (14.0)	924 (24.4)	936 (22.5)	427 (32.9)	451 (29.7)	2293 (21.2)	2224 (18.8)
	[15.2-17.8]	[12.7-15.4]	[23.0-25.9]	[20.9-24.3]	[29.5-36.5]	[27.4-32.6]	[20.1-22.3]	[17.8-19.9]
Dementia	304 (5.4)	215 (3.2)	513 (13.5)	452 (9.9)	470 (34.3)	506 (29.6)	1287 (11.6)	1173 (8.6)
	[4.7-6.3]	[2.7-3.8]	[12.1-15.1]	[9.0-10.9]	[31.2-37.6]	[26.9-31.8]	[10.7-12.7]	[8.1-9.3]

Abbreviations: CIND, cognitive impairment—no dementia; HRS, Health and Retirement Study. 16

Values for 2012 weighted percentages in the lower half of the table are ageand sex-standardized to the 2000 population using direct standardization. Boldface values differ from those in the non-age- and sex-standardized data.

DEMENTIA is **DECREASING** in the United States

^a Values in parentheses are weighted percentages (95% CIs) derived using the HRS sampling weights to adjust for the complex design of the HRS survey.

Seattle-based Adult Changes in Thought study

• Alzheimer's disease...... 45%

Vascular based lesions...... 33%

• Lewy Body Dementia...... 10%

Reversible Causes of MCI/Dementia

D rugs (digoxin, theophylline, cimetidine, anticholinergic

E motional (depression)

M etabolic (hypothyroidism,B12)

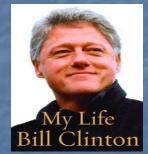
E yes and ears (sensory isolation)

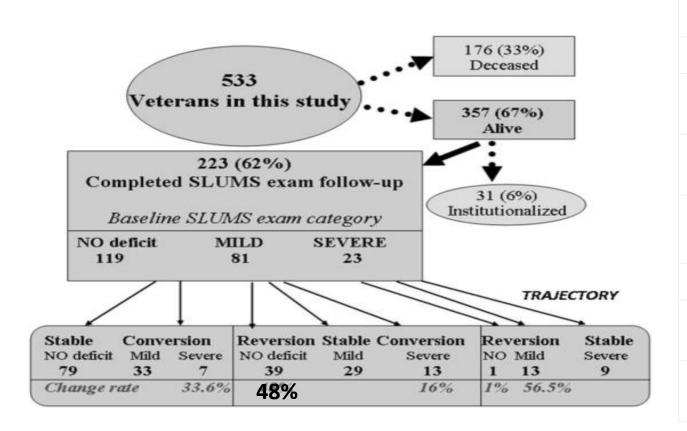
N ormal Pressure Hydrocephalus (ataxia, incontinence, and dementia)

T umor or other space-occupying lesion

I nfection (syphilis, chronic infections)

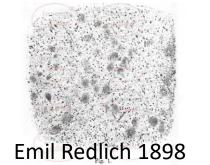
A trial fibrillation (vitamin B12 deficiency)/Alcoholism


S leep Apnea



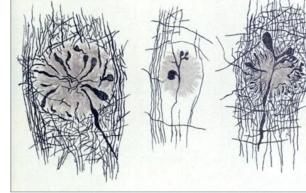
Correction of visual loss		
Stability	1 [Reference]	
Conversion	1.12 (0.27– 4.71)	.877
Reversion	4.65 (1.58– 13.70)	.005
Discontinuation of anticholinergic		
Stability	1 [Reference]	
Conversion	1.88 (0.69– 5.13)	.218
Reversion	4.57 (1.87– 11.18)	.001

Cognitive Deficit Reversal as Shown by Changes in the Veterans Affairs Saint Louis University Mental Status (SLUMS) Examination Scores 7.5 Years Later


Very strong	Strong	Moderate
3 points per drug	2 points per drug	1 point per drug
Amitriptyline	Amantadine	Carbidopa-Levodopa
Atropine	Baclofen	Entacapone
Benztropine	Cetirizine	Haloperidol
Carisoprodol	Cimetidine	Metocarbamol
Ciproeptadine	Clozapine	Metoclopramide
Chlorpheniramine	Cyclobenzaprine	Mirtazapine
Chlorpromazine	Desipramine	Paroxetine
Dicyclomine	Loperamide	Pramipexole
Diphenhydramine	Nortriptyline	Quetiapine
Fluphenazine	Olanzapine	Ranitidine
Hydroxyzine	Prochlorperazine	Risperidone
Hyoscyamine	Pseudoephedrine	Selegiline
Imipramine	Tolterodine	Trazodone
Meclizine		Ziprasidone
Oxybutynin		Chalinastan
Perphenazine		— Cholinester
Promethazine		Chol
Thioridazine		
Thiothixene		Choline → ACh ○ ○
Tizanidine		ACh
Trifluoperazine		AChE (

Cholinesterase Inhibitors

Solomon Carter Fuller, 1906



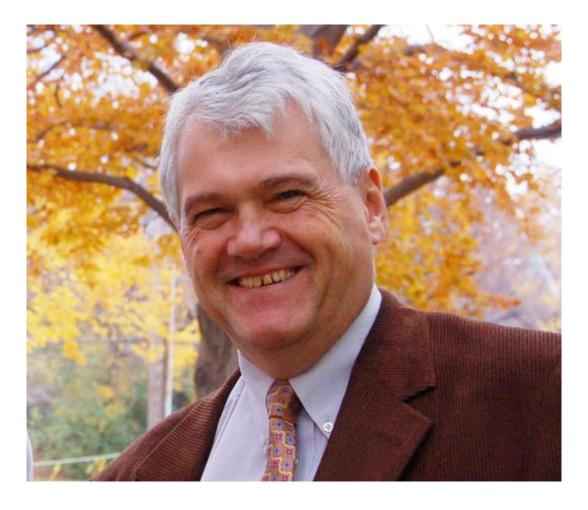
What's in a name?

Miyake 1906

12 patients with plaque out of 16 with senile dementia

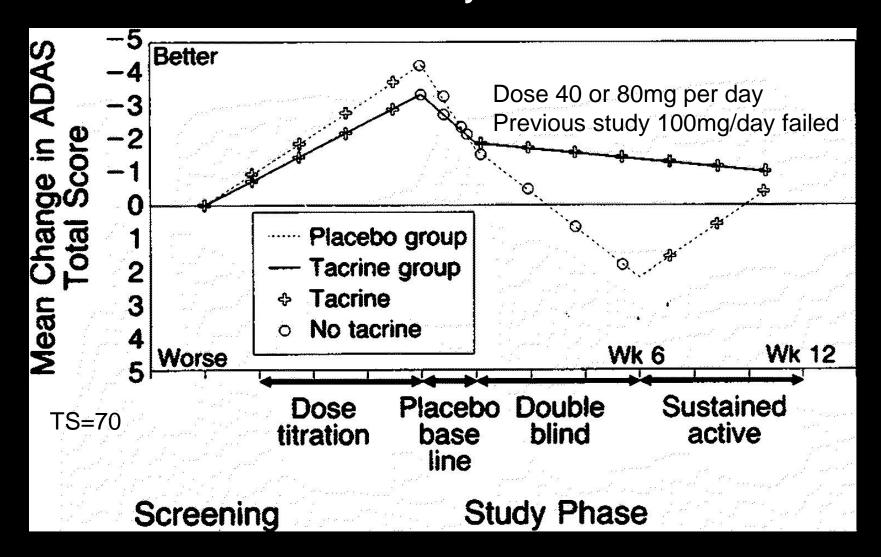
10 controls, 10 psychosis, 45 neurosyphilis – NO PLAQUES

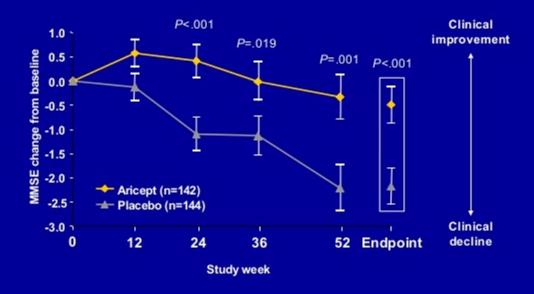
Oskar Fischer, 1907


Auguste Deter

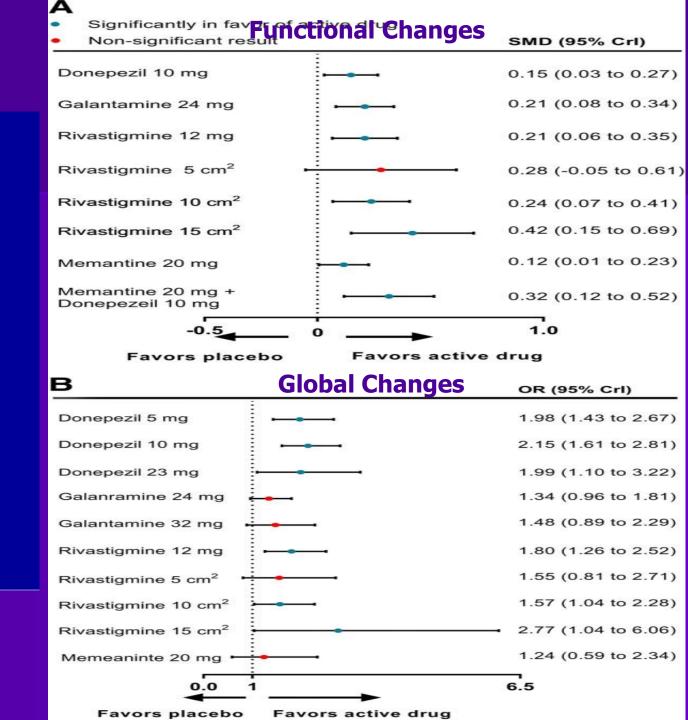
Biomarker magnitude

€ Published 2016


The Cholinergic Hypothesis



David Bowen Peter Whitehouse


Mean Change in ADAS Total Score during the Phases of the Study.

Cognitive Benefits in Mild to Moderate AD (MMSE: 10-26)

Adapted with permission from Winblad et al. *Neurology*. 2001;57:489-495. See Appendix for study description and safety information (Nordic).

BMJ. 2005 Aug 6;331(7512):321-7.

Cholinesterase inhibitors for patients with Alzheimer's disease: systematic review of randomised clinical trials.

<u>Kaduszkiewicz H</u>¹, <u>Zimmermann T</u>, <u>Beck-Bornholdt HP</u>, <u>van den Bussche H</u>.

Results 22 trials met the inclusion criteria. Follow-up ranged from six weeks to three years. 12 of 14 studies measuring the cognitive outcome by means of the 70 point Alzheimer's disease assessment scale—cognitive subscale showed differences ranging from 1.5 points to 3.9 points in favour of the respective cholinesterase **inhibitors.** Benefits were also reported from all 12 trials that used the clinician's interview based impression of change scale with input from caregivers (0.26-0.54). Methodological assessment of all studies found considerable flaws—for example, multiple testing without correction for multiplicity or exclusion of patients after randomisation.

Because of flawed methods and small clinical benefits, the scientific basis for recommendations of cholinesterase inhibitors for the treatment of Alzheimer's disease is questionable.

<u>Drugs Aging.</u> 2015 Jun;32(6):453-67. doi: 10.1007/s40266-015-0266-9. **A Risk-Benefit Assessment of Dementia Medications: Systematic Review of the Evidence.**<u>Buckley JS</u>¹, <u>Salpeter SR</u>.

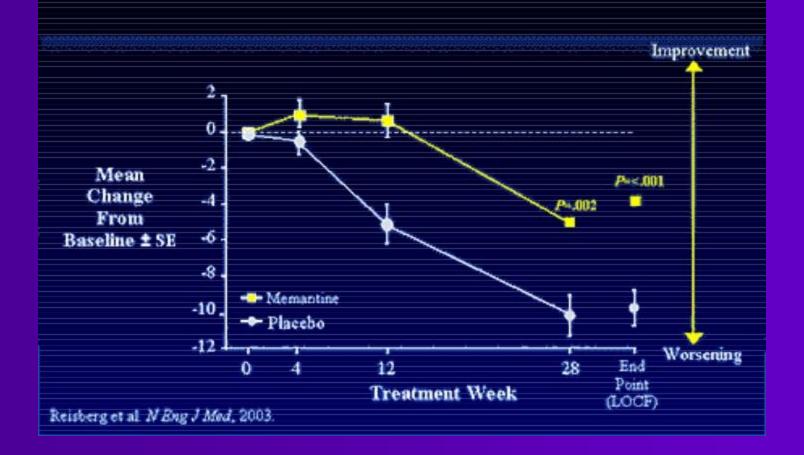
- 257 were included in the systematic review.
- In pooled trial data, cholinesterase inhibitors (ChEIs) produce small improvements in cognitive, functional, and global benefits in patients with mild to moderate Alzheimer's and Lewy body dementia, but the clinical significance of these effects are unclear.
- The efficacy of ChEI treatment appears to wane over time, with minimal benefit seen after 1 year.
- There is no evidence for benefit for those with advanced disease or those aged over 85 years.
- Adverse effects are significantly increased with ChEIs, in a dose-dependent manner. A two- to fivefold increased risk for gastrointestinal, neurological, and cardiovascular side effects is related to cholinergic stimulation, the most serious being weight loss, debility, and syncope.
- Those aged over 85 years have double the risk of adverse events compared with younger patients.

TABLE 1

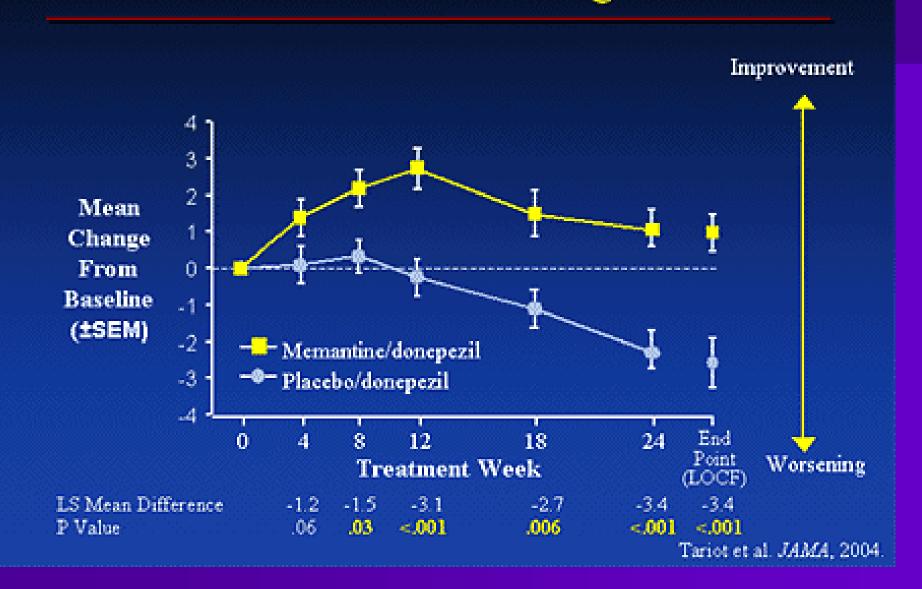
Cognitive enhancers approved for Alzheimer disease

	Proprietary name		
Drug	(date approved)	Indications	Formulations
Cholinesterase	inhibitors		
Donepezil	Aricept (1996), generics available	Mild to moderate disease (5–10 mg), moderate to severe disease (10–23 mg)	Tablets, disintegrating tablets
Rivastigmine	Exelon (2000), generics available	Mild to moderate disease	Tablets, oral solution, transdermal patch
Galantamine	Razadyne (2001), generics available	Mild to moderate disease	Immediate-release tablets, oral solution, extended-release tablets
<i>N</i> -methyl-D-asp	artate receptor antag	gonist	
Memantine	Namenda (2003), generics available	Moderate to severe disease	Tablets, oral solution
Combination di	rug		
Donepezil + memantine	Namzaric (2014), generics available	Moderate to severe disease	Extended-release capsules

TABLE 3


Adverse effects of cognitive enhancers: Percent of patients affected

		Cholinest	NMDA receptor antagonist		
	Donepezil Galantamine R		Rivastigmine	Rivastigmine transdermal	Memantine
Nausea	3%-19% ^a	21%	17%–47%	2%–4%	Not available
Diarrhea	5%-15% ^a	7%	5%–19%	≤ 7%	5%
Constipation					3%–5%
Anorexia	2%–8%	7% (decreased appetite)	≥ 17% 3%–26% (weight loss)	≤ 3%	< 1% 3% (weight gain) (extended- release formulation)
Vomiting	3%-9% ^a	11%	13%–31%	3%–9%	2%–3%
Insomnia	2%-14%	Not available	1%–9%	Not available	Not available
Headache	3%-10%	7%	4%–17%	≤ 4%	6%
Dizziness	2%-8%	8%	6%–21%	≤ 6%	5%–7%
Fatigue	1%-8%	4%	4%–9%	2%-4%	2%
Syncope	2%	1%	3% (falling) 6%–12%	Not available	Not available
Bradycardia	≥ 1%	1%	< 1%	< 1%	< 1%
Infection	11%	< 1%	1%–10% (urinary tract infections)	Not available	4% (influenza)
an Link					


^aDose-related.

NMDA = N-methyl-D-aspartate

Memantine in severe AD

Memantine Plus Donepezil in Moderate to Severe AD: Cognitive – SIB

Common adverse effects

Drug hypersensitivity Somnolence

Dizziness

Balance disorders

Hypertension

Dyspnoea

Elevated liver function test

Constipation

Headache

Adapted from Summary of Produ

Uncommon adverse effects

Fungal infections

Confusion

Hallucinations (mostly people with severe AD)

Abnormal gait

Cardiac failure

Venous thrombosis/

thromboembolism

Vomiting

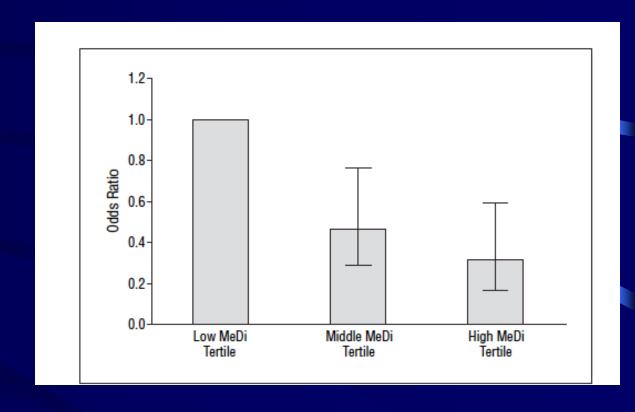
Fatigue

Very rare/unknown adverse effects

Seizures (very rare)
Psychotic reactions
(unknown—isolated cases
reported post-marketing)
Pancreatitis (unknown—isolated
cases reported
post-marketing)

Hepatitis (unknown)

Mediterranean Diet associated with reduced risk of Alzheimer's Disease

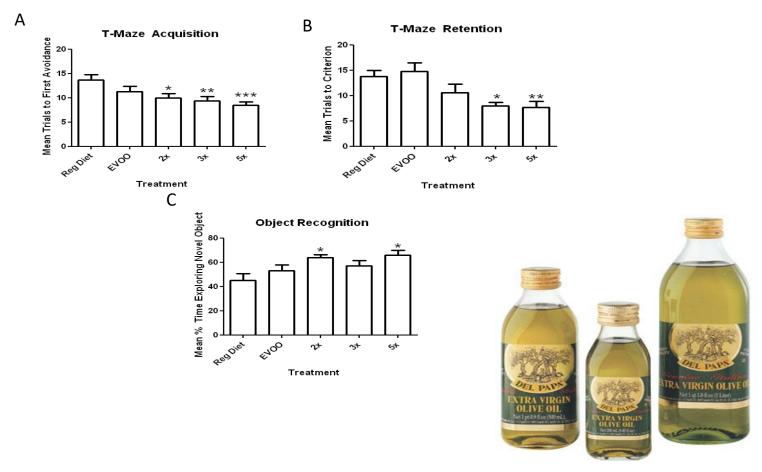

Journal of Alzheimer's Disease xx (20xx) x-xx DOI 10.3233/JAD-130830 IOS Press

Association of Mediterranean Diet with Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review and Meta-Analysis

Balwinder Singh^{a,d}, Ajay K. Parsaik^a, Michelle M. Mielke^b, Patricia J. Erwin^c, David S. Knopman^a, Ronald C. Petersen^{a,b} and Rosebud O. Roberts^{a,b,a}

^dDepartment of Clinical Neuroscience, University of North Dakota School of Medicine and Health Sciences, Fargo, ND, USA

			Hazard Ratio	Hazard Ratio	
Study or Subgroup	log[Hazard Ratio]	SE Weight	IV, Random, 95% CI	IV, Random, 95% CI	_
Feart 2009	-0.2169 0.39	66 6.3%	0.81 [0.37, 1.75]	•	
Roberts 2010	-0.2889 0.24	67 16.4%	0.75 [0.46, 1.21]		
Scarmeas 2006	-0.5034 0.18	58 28.9%	0.60 [0.42, 0.87]		
Scarmeas 2009 AD	-0.6539 0.28	31 12.5%	0.52 [0.30, 0.91]		
Scarmeas 2009 MCI	-0.3285 0.16	68 35.9%	0.72 [0.52, 1.00]	-	
Total (95% CI)		100.0%	0.67 [0.55, 0.81]	•	
Heterogeneity: Tau ² = 0	.00; Chi ² = 1.71, df = 4 (P	= 0.79); I ² =	0%	0.5 0.7 1 1.5 2	
Test for overall effect: Z	= 4.06 (P < 0.0001)			Favours High MeDi Score Favours Low MeDi Score	



^aDepartment of Neurology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA

Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA

CMayo Medical Libraries, Mayo Clinic, Rochester, MN, USA

Extra Virgin Olive Oil Extracts

Polyphenyls block oxidative damage

RESEARCH PAPER

Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial

Elena H Martínez-Lapiscina, ^{1,2} Pedro Clavero, ³ Estefania Toledo, ^{1,4} Ramon Estruch, ^{4,5} Jordi Salas-Salvadó, ^{4,6} Beatriz San Julián, ¹ Ana Sanchez-Tainta, ¹ Emilio Ros, ^{4,7} Cinta Valls-Pedret, ^{4,7} Miguel Á Martinez-Gonzalez ¹

Table 4	Multivariable-ad	justed means after a	a 61/2-year follow-	up and differences versus	control (95% CIs) in each inte	ervention group
		,				

	MedDiet+EVOO (n=224)		MedDiet+Nuts (n=166)	Control (low-fat diet) (n=132)	
	Mean (95% CI)	p Value (vs control)	Mean (95% CI)	p Value (vs control)	Mean (95% CI)
MMSE	27.73 (27.27 to 28.19)		27.68 (27.20 to 28.16)		27.11 (26.61 to 27.61)
Adjusted diff. versus control (95% CI)	+0.62 (+0.18 to +1.05)	0.005	+0.57 (+0.11 to +1.03)	0.015	0 (reference)
CDT	5.31 (4.98-5.64)		5.13 (4.78-5.47)		4.80 (4.44-5.16)
Adjusted diff. versus control (95% CI)	+0.51 (+0.20 to +0.82)	0.001	+0.33 (+0.003 to +0.67)	0.048	0 (reference)

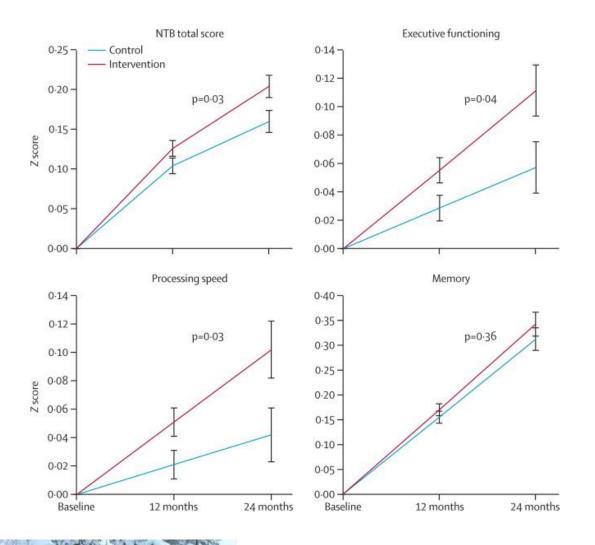
Exercise and the Brain

Aerobic exercise for 6 months decreased brain atrophy.....

al

61:1166

Increased cognition


Decreased dysphoria

LIFE Study suggests need For HIGH DOSE exercise

Colcombe et

LA 2006;

FINGER STUDY

Aged 60-77 years recruited from previous national surveys.

A 2 year multidomain intervention (diet, exercise, cognitive training, vascular risk monitoring), or a control group (general health advice). 1260 to the intervention group (n=631) or control group (n=629).

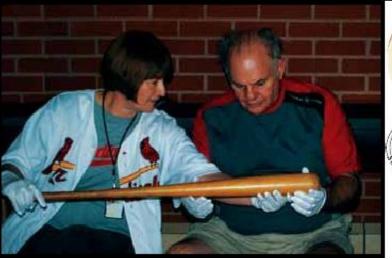
A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial

Tiia Ngandu, Jenni Lehtisalo, Alina Solomon, Esko Levälahti, Satu Ahtiluoto, Riitta Antikainen, Lars Bäckma...

Improves Cognition

Reminiscence Therapy*

- Discussion about the past, often using prompts (e.g. pictures, objects, music) with groups or individuals (e.g. life review books).
- Focuses on long-term memory, the last to deteriorate in dementia.
- Extremely popular helps to avoid failure experiences, aids communication.
- Cochrane review**showed marginal improvements in cognition and mood.
- <u>Football reminiscence for men with dementia: lessons from a realistic evaluation.</u> Tolson D, Schofield I.Nurs Inq. 2012 Mar; 19(1):63-70

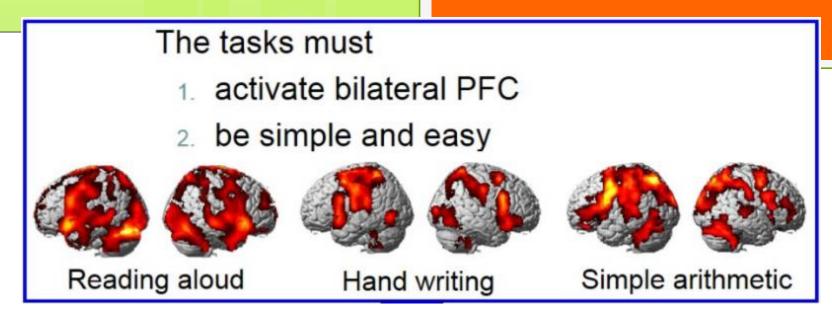


Cardinals Reminiscence League

GEC Introduces Reminiscence Leagues to St. Louis

2011: CRL group begins at Jefferson Barracks VAMC 2014: CRL group begins at St. Louis Alzheimer's Association

2014: In partnership with GEC, St. Louis Alzheimer's Association develops CRL Tool Kit 2017: 5 CRL groups active in the St. Louis area

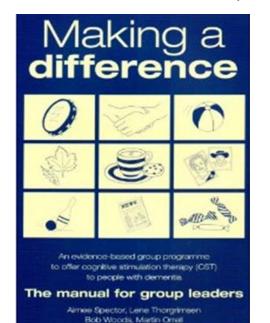


<u>With dementia.</u> Wingbermuehle C, Bryer D, Berg-Weger M, Tumosa N, McGillick J, Rodriguez C, Gill D, Wilson N, Leonard K, **Tolson D.** J Am Med Dir Assoc. 2014 Feb;15(2):85-9.

Evidence

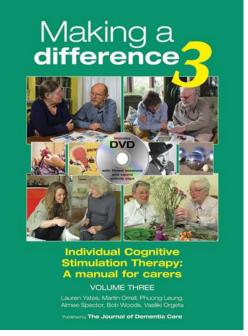
- Improved cognition, mood, behavior
- Reduction of caregiver strain
- Improved staff/member relationships
- Social nature of the groups may be an important factor in promoting the above benefits

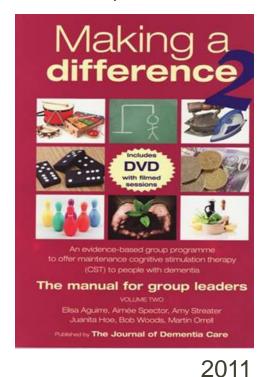
SAIDO J Am med Dir Assoc 2015;16:56



INCREASED MMSE

Cognitive Stimulation Therapy


- o Tacrine and psychological therapies in dementia: No contest?
- (Orrell & Woods, 1996, British Journal of Psychiatry)



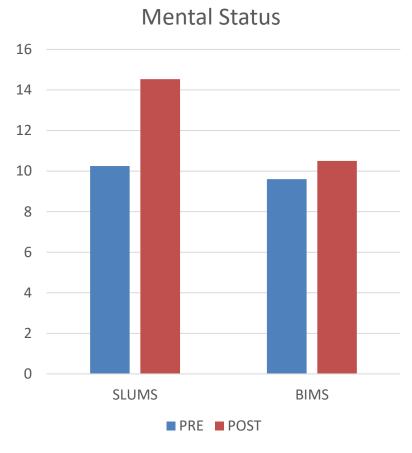
Publication The Journal for Dementia Care

2006 2014

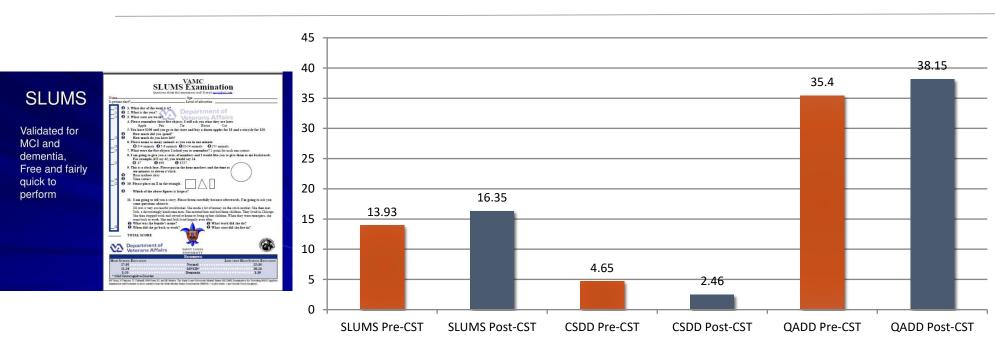
History of CST

- Created largely by Aimee Spector, Martin Orrell, and Bob Woods:
 - www.cstdementia.com
- Began with a review of literature on non-pharmacological therapies for mild to moderate dementia
- Grounded in reality orientation, the founders combined the most effective elements of the different therapies to create CST
- North American Training Center for CST at St Louis University

Evidence to Support CST Effectiveness


- o 2003 Pilot Study (Spector et al., 2003)
 - Analysis suggested that for improvements in cognition, CST is equally effective as several dementia drugs.
 - CST led to significant improvements in quality of life, as rated by the participants themselves using the QoL-AD. There were no reported sideeffects of CST.
- 23-center RCTs (residential homes and day centers) (Spector et al., 2003)
 - CST led to significant benefits in people's cognitive functioning and language skills including naming, word-finding and comprehension.
- Qualitative work (Spector et al., 2011)
 - Participants experience greater sense of accomplishment, support, active engagement, and improvement in memory, concentration, and alertness

CST is endorsed as the only non-pharmacological interventions for cognitive symptoms and maintaining function by the UK Government National Institute for Health and Care Excellence (NICE), regardless of drug regiment.



Cognitive Stimulation Therapy: NHC Nursing Home

Perry County Mean Pre & Post Scores by Test

Sample Characteristics (N=164)

Variables	CST Participants
Gender	71.3% Female
Age	78.55±10.01
Race	14.9% Non-White
Education	95.1% High School Graduate & Above
Living Arrangement	61% Community Dwelling
Pre-CST SLUMS	13.93

Paired Sample T-Test

	Mean	Std Dev	SE Mean	t value	Df	Sig (two-tailed)
SLUMS	2.061	3.716	.307	6.725	146	.000
Cornell Scale for	-1.921	3.847	.318	-6.034	145	.000
Depression						
Quality of Life –	2.545	4.658	.387	6.579	144	.000
Alzheimer's Disease						

Examples of Participant Improvement in Clock Drawing Test

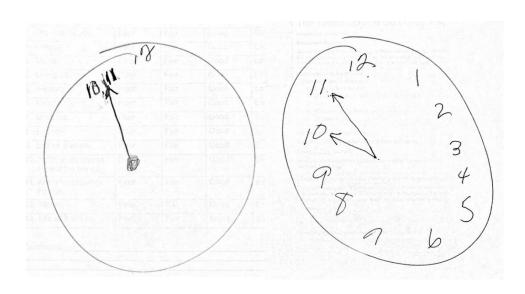


Fig. 1. Resident A Clock Drawing Test Pre- and Post-CST Results

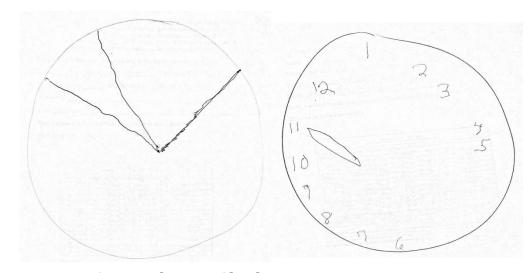
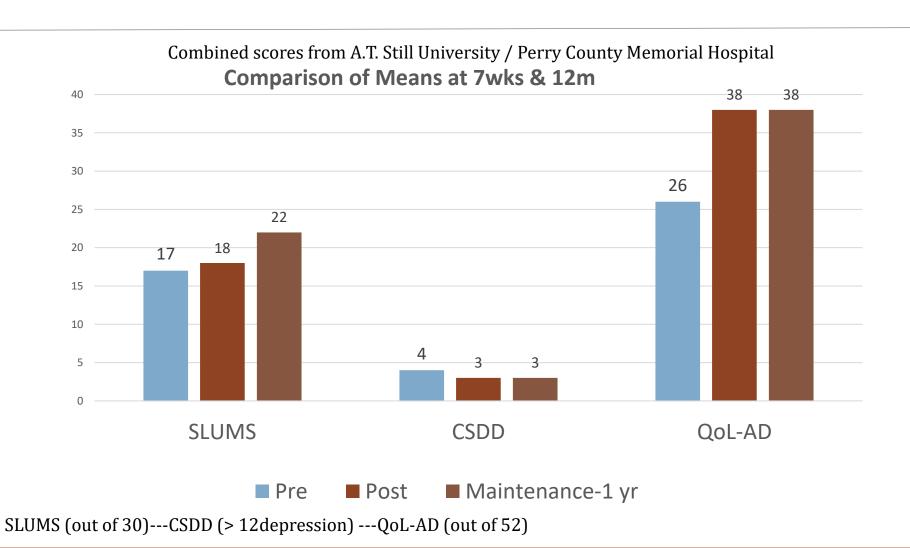
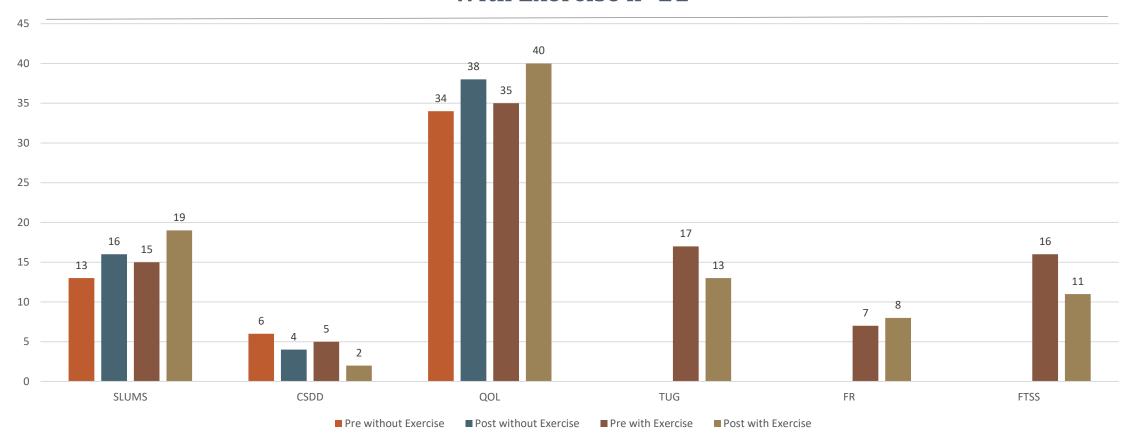



Fig. 2. Resident B Clock Drawing Test Pre- and Post-CST Results


Maintenance Cognitive Stimulation Therapy (MCST)

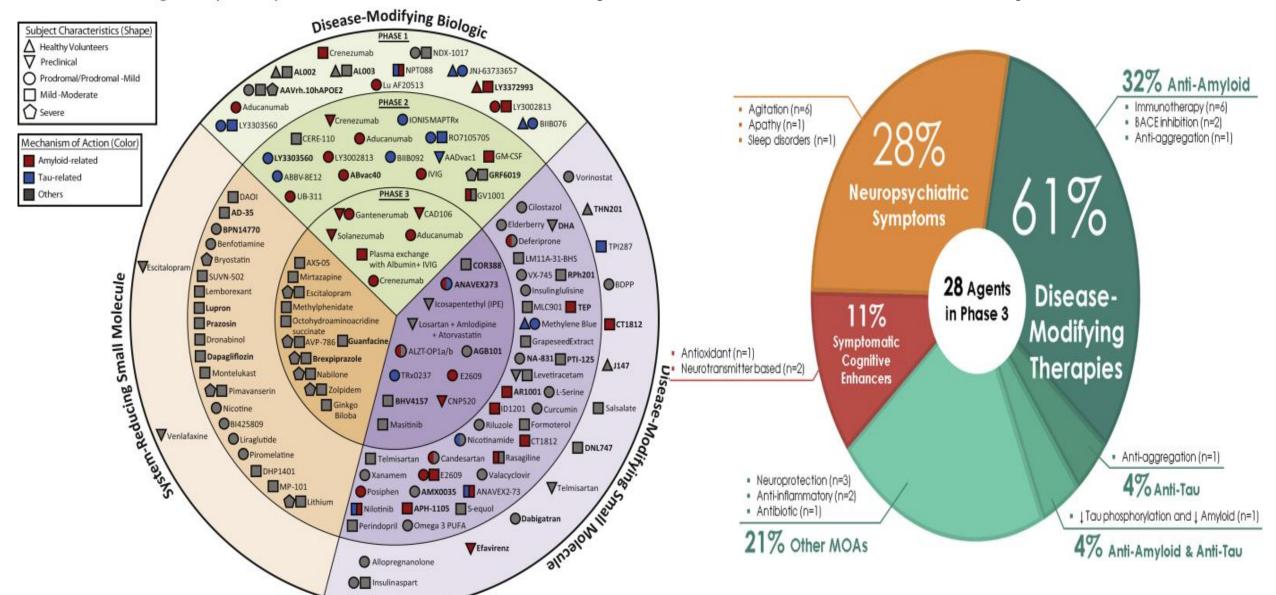
Combining Physical Exercise with CST

CST Dementia: SLUMS 1-20
Without Exercise n=34
vs
With Exercise n=21

SLUMS: <20 dementia

CCSDD: A score >12depression QoL-AD: maximum of 52

Measures high risk for falling, disability, and morbidity in older adults:


Timed Up & Go: ≥12 seconds

Functional Reach: 6 inches or less

Five Times Sit to Stand: > 13.6 seconds

2019 Alzheimer's Drug Development Pipeline

Bryostain: A Protein Kinase Epsilon Activator

Oligomannate

- China approves seaweed-based Alzheimer's drug.
- It's the first new one in 17 years

PREVAGEN

- Apoaequorin is an ingredient in "Prevagen", which is marketed by Quincy Bioscience as a memory supplement.
- The US <u>Federal Trade Commission</u> (FTC) charged the maker with <u>falsely advertising</u> that the product improves memory, provides cognitive benefits, and is "clinically shown" to work.
- According to the FTC, "the marketers of Prevagen preyed on the fears of older consumers experiencing <u>age-related memory loss</u>".
- Prior to the suit, a clinical trial run by researchers employed by Quincy Bioscience "found no overall benefit compared to a placebo for its primary endpoints involving memory and cognition",

DEMENTIA TREATMENT

- Mediterranean/MIND Diet + Olive Oil
- Exercise
- Behavioral Therapy / Keep Mind Active
- Drugs
- ?Update vaccinations